A Note on Harmonious Coloring of Caterpillars

نویسندگان

  • Asahi Takaoka
  • Shingo Okuma
  • Satoshi Tayu
  • Shuichi Ueno
چکیده

The harmonious coloring of an undirected simple graph is a vertex coloring such that adjacent vertices are assigned different colors and each pair of colors appears together on at most one edge. The harmonious chromatic number of a graph is the least number of colors used in such a coloring. The harmonious chromatic number of a path is known, whereas the problem to find the harmonious chromatic number is NP-hard even for trees with pathwidth at most 2. Hence, we consider the harmonious coloring of trees with pathwidth 1, which are also known as caterpillars. This paper shows the harmonious chromatic number of a caterpillar with at most one vertex of degree more than 2. We also show the upper bound of the harmonious chromatic number of a 3-regular caterpillar. key words: caterpillars, Eulerian trail, harmonious coloring, harmonious chromatic number, pathwidth

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on maximum differential coloring of planar graphs

We study the maximum differential coloring problem, where the vertices of an n-vertex graph must be labeled with distinct numbers ranging from 1 to n, so that the minimum absolute difference between two labels of any two adjacent vertices is maximized. As the problem is NP-hard for general graphs [16], we consider planar graphs and subclasses thereof. We prove that the maximum differential colo...

متن کامل

The harmonious coloring problem is NP-complete for interval and permutation graphs

In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs. Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previo...

متن کامل

Harmonious coloring of trees with large maximum degree

A harmonious coloring of G is a proper vertex coloring of G such that every pair of colors appears on at most one pair of adjacent vertices. The harmonious chromatic number of G, h(G), is the minimum number of colors needed for a harmonious coloring of G. We show that if T is a forest of order n with maximum degree ∆(T ) ≥ n+2 3 , then h(T ) = { ∆(T ) + 2, if T has non-adjacent vertices of degr...

متن کامل

Harmonious Coloring on Subclasses of Colinear Graphs

Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous NP-completeness results of the harmonious coloring problem on subclasses of chordal and co-chordal graphs, we prove that...

متن کامل

Harmonious and achromatic colorings of fragmentable hypergraphs

A harmonious coloring of a k-uniform hypergraphH is a rainbow vertex coloring such that each k-set of colors appears on at most one edge. A rainbow coloring of H is achromatic if each k-set of colors appears on at least one edge. The harmonious (resp. achromatic) number of H , denoted by h(H) (resp. ψ(H)) is the minimum (resp. maximum) possible number of colors in a harmonious (resp. achromatic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 98-D  شماره 

صفحات  -

تاریخ انتشار 2015